Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Glob Chang Biol ; 30(3): e17226, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38454541

RESUMO

The increase of environmental temperature due to current global warming is not only favouring the expansion of the distribution range of many insect species, but it is also changing their phenology. Insect phenology is tightly linked to developmental timing, which is regulated by environmental temperatures. However, the degree to which the effects of developmental temperatures extend across developmental stages and their inter-stage relationships have not been thoroughly quantified in mosquitoes. Here, we used the mosquito Aedes albopictus, which is an aggressive invasive species and an arboviral vector, to study how developmental temperature influences fitness across developmental stages, thermal traits, energy reserves, transcriptome and Wolbachia prevalence in laboratory-reared populations originally collected from either temperate or tropical regions. We show that hatchability, larval and pupal viability and developmental speed are strongly influenced by temperature, and these effects extend to wing length, body mass, longevity and content of water, protein and lipids in adults in a population-specific manner. On the contrary, neither adult thermal preference nor heat resistance significantly change with temperature. Wolbachia density was generally lower in adult mosquitoes reared at 18°C than at other tested temperatures, and transcriptome analysis showed enrichment for functions linked to stress responses (i.e. cuticle proteins and chitin, cytochrome p450 and heat shock proteins) in mosquitoes reared at both 18 and 32°C. Our data showed an overall reduced vector fitness performance when mosquitoes were reared at 32°C, and the absence of isomorphy in the relationship between developmental stages and temperature in the laboratory population deriving from larvae collected in northern Italy. Altogether, these results have important implications for reliable model projections of the invasion potentials of Ae. albopictus and its epidemiological impact.


Assuntos
Aedes , Mudança Climática , Animais , Temperatura , Aedes/fisiologia , Aquecimento Global , Larva/fisiologia
2.
Environ Microbiol ; 26(3): e16588, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38450576

RESUMO

Dengue represents an increasing public health burden worldwide. In Africa, underreporting and misdiagnosis often mask its true epidemiology, and dengue is likely to be both more widespread than reported data suggest and increasing in incidence and distribution. Wolbachia-based dengue control is underway in Asia and the Americas but has not to date been deployed in Africa. Due to the genetic heterogeneity of African Aedes aegypti populations and the complexity of the host-symbiont interactions, characterization of key parameters of Wolbachia-carrying mosquitoes is paramount for determining the potential of the system as a control tool for dengue in Africa. The wAlbB Wolbachia strain was stably introduced into an African Ae. aegypti population by introgression, and showed high intracellular density in whole bodies and different mosquito tissues; high intracellular density was also maintained following larval rearing at high temperatures. No effect on the adult lifespan induced by Wolbachia presence was detected. Moreover, the ability of this strain to strongly inhibit DENV-2 dissemination and transmission in the host was also demonstrated in the African background. Our findings suggest the potential of harnessing Wolbachia for dengue control for African populations of Ae. aegypti.


Assuntos
Aedes , Dengue , Wolbachia , Animais , Burkina Faso/epidemiologia , Wolbachia/genética , Ásia , Dengue/prevenção & controle
3.
Mol Ecol ; 32(22): 6018-6026, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37804145

RESUMO

Drosophila suzukii (Matsumura, 1931), the spotted-wing drosophila, is a highly invasive fruit fly that spread from Southern Asia across most regions of Asia and, in the last 15 years, has invaded Europe and the Americas. It is an economically important pest of small fruits such as berries and stone fruits. Drosophila suzukii speciated by adapting to cooler, mountainous, and forest environments. In temperate regions, it evolved seasonal polyphenism traits which enhanced its survival during stressful winter population bottlenecks. Consequently, in these temperate regions, the populations undergo seasonal reproductive dynamics. Despite its economic importance, no data are available on the behavioural reproductive strategies of this fly. The presence of polyandry, for example, has not been determined despite the important role it might play in the reproductive dynamics of populations. We explored the presence of polyandry in an established population in Trentino, a region in northern Italy. In this area, D. suzukii overcomes the winter bottleneck and undergoes a seasonal reproductive fluctuation. We observed a high remating frequency in females during the late spring demographic explosion that led to the abundant summer population. The presence of a high degree of polyandry and shared paternity associated with the post-winter population increase raises the question of the possible evolutionary adaptive role of this reproductive behaviour in D. suzukii.


Assuntos
Drosophila , Espécies Introduzidas , Feminino , Animais , Drosophila/genética , Reprodução , Ásia , Europa (Continente)
4.
mSphere ; 8(2): e0056422, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-36840596

RESUMO

The primary route of Zika virus (ZIKV) transmission is through the bite of an infected Aedes mosquito, when it probes the skin of a vertebrate host during a blood meal. Viral particles are injected into the bite site together with mosquito saliva and a complex mixture of other components. Some of them are known to play a key role in the augmentation of the arbovirus infection in the host, with increased viremia and/or morbidity. This vector-derived contribution to the infection is not usually considered when vaccine candidates are tested in preclinical animal models. In this study, we performed a preclinical validation of a promising ZIKV vaccine candidate in a mosquito-mouse transmission model using both Asian and African ZIKV lineages. Mice were immunized with engineered ZIKV virus-like particles and subsequently infected through the bite of ZIKV-infected Aedes aegypti mosquitoes. Despite a mild increase in viremia in mosquito-infected mice compared to those infected through traditional needle injection, the vaccine protected the animals from developing the disease and strongly reduced viremia. In addition, during peak viremia, naive mosquitoes were allowed to feed on infected vaccinated and nonvaccinated mice. Our analysis of viral titers in mosquitos showed that the vaccine was able to inhibit virus transmission from the host to the vector. IMPORTANCE Zika is a mosquito-borne viral disease, causing acute debilitating symptoms and complications in infected individuals and irreversible neuronal abnormalities in newborn children. The primary vectors of ZIKV are Aedes aegypti mosquitoes. Despite representing a significant public health burden with a widespread transmission in many regions of the world, Zika remains a neglected disease with no effective antiviral therapies or approved vaccines. It is known that components of the mosquito bite lead to an enhancement of viral infection and spread, but this aspect is often overlooked when vaccine candidates undergo preclinical validation. In this study, we included mosquitoes as viral vectors, demonstrating the ability of a promising vaccine candidate to protect animals against ZIKV infections after the bite of an infected mosquito and to also prevent its further transmission. These findings represent an additional crucial step for the development of an effective prevention tool for clinical use.


Assuntos
Vacinas de Partículas Semelhantes a Vírus , Infecção por Zika virus , Zika virus , Animais , Camundongos , Viremia/prevenção & controle , Mosquitos Vetores
5.
Pathog Glob Health ; 117(3): 245-258, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36205550

RESUMO

Following transfer into the primary arbovirus vector Aedes aegypti, several strains of the intracellular bacterium Wolbachia have been shown to inhibit the transmission of dengue, Zika, and chikungunya viruses, important human pathogens that cause significant morbidity and mortality worldwide. In addition to pathogen inhibition, many Wolbachia strains manipulate host reproduction, resulting in an invasive capacity of the bacterium in insect populations. This has led to the deployment of Wolbachia as a dengue control tool, and trials have reported significant reductions in transmission in release areas. Here, we discuss the possible mechanisms of Wolbachia-virus inhibition and the implications for long-term success of dengue control. We also consider the evidence presented in several reports that Wolbachia may cause an enhancement of replication of certain viruses under particular conditions, and conclude that these should not cause any concerns with respect to the application of Wolbachia to arbovirus control.


Assuntos
Aedes , Arbovírus , Vírus da Dengue , Dengue , Wolbachia , Infecção por Zika virus , Zika virus , Animais , Humanos , Arbovírus/fisiologia , Vírus da Dengue/fisiologia , Mosquitos Vetores , Dengue/prevenção & controle , Dinâmica Populacional
6.
Insects ; 13(2)2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35206789

RESUMO

The emerging distribution of new alien mosquito species was recently described in Europe. In addition to the invasion of Aedes albopictus, several studies have focused on monitoring and controlling other invasive Aedes species, as Aedes koreicus and Aedes japonicus. Considering the increasing development of insecticide resistance in Aedes mosquitoes, new control strategies, including the use of bacterial host symbionts, are proposed. However, little is known about the bacterial communities associated with these species, thus the identification of possible candidates for Symbiotic Control is currently limited. The characterization of the natural microbiota of field-collected Ae. koreicus mosquitoes from North-East Italy through PCR screening, identified native infections of Wolbachia in this species that is also largely colonized by Asaia bacteria. Since Asaia and Wolbachia are proposed as novel tools for Symbiotic Control, our study supports their use for innovative control strategies against new invasive species. Although the presence of Asaia was previously characterized in Ae. koreicus, our study characterized this Wolbachia strain, also inferring its phylogenetic position. The co-presence of Wolbachia and Asaia may provide additional information about microbial competition in mosquito, and to select suitable phenotypes for the suppression of pathogen transmission and for the manipulation of host reproduction in Ae. koreicus.

7.
mBio ; 12(6): e0025021, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34749528

RESUMO

Environmental factors play a crucial role in the population dynamics of arthropod endosymbionts, and therefore in the deployment of Wolbachia symbionts for the control of dengue arboviruses. The potential of Wolbachia to invade, persist, and block virus transmission depends in part on its intracellular density. Several recent studies have highlighted the importance of larval rearing temperature in modulating Wolbachia densities in adults, suggesting that elevated temperatures can severely impact some strains, while having little effect on others. The effect of a replicated tropical heat cycle on Wolbachia density and levels of virus blocking was assessed using Aedes aegypti lines carrying strains wMel and wAlbB, two Wolbachia strains currently used for dengue control. Impacts on intracellular density, maternal transmission fidelity, and dengue inhibition capacity were observed for wMel. In contrast, wAlbB-carrying Ae. aegypti maintained a relatively constant intracellular density at high temperatures and conserved its capacity to inhibit dengue. Following larval heat treatment, wMel showed a degree of density recovery in aging adults, although this was compromised by elevated air temperatures. IMPORTANCE In the past decades, dengue incidence has dramatically increased all over the world. An emerging dengue control strategy utilizes Aedes aegypti mosquitoes artificially transinfected with the bacterial symbiont Wolbachia, with the ultimate aim of replacing wild mosquito populations. However, the rearing temperature of mosquito larvae is known to impact on some Wolbachia strains. In this study, we compared the effects of a temperature cycle mimicking natural breeding sites in tropical climates on two Wolbachia strains, currently used for open field trials. When choosing the Wolbachia strain to be used in a dengue control program it is important to consider the effects of environmental temperatures on invasiveness and virus inhibition. These results underline the significance of understanding the impact of environmental factors on released mosquitoes, in order to ensure the most efficient strategy for dengue control.


Assuntos
Aedes/microbiologia , Larva/crescimento & desenvolvimento , Mosquitos Vetores/microbiologia , Wolbachia/fisiologia , Aedes/crescimento & desenvolvimento , Aedes/virologia , Animais , Dengue/transmissão , Dengue/virologia , Vírus da Dengue/fisiologia , Ecossistema , Feminino , Humanos , Larva/microbiologia , Larva/virologia , Masculino , Controle de Mosquitos , Mosquitos Vetores/crescimento & desenvolvimento , Mosquitos Vetores/virologia , Dinâmica Populacional , Temperatura , Wolbachia/genética
8.
mBio ; 12(2)2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33785632

RESUMO

The mosquito microbiota is composed of several lineages of microorganisms whose ecological roles and evolutionary histories have yet to be investigated in depth. Among these microorganisms, Asaia bacteria play a prominent role, given their abundance in the gut, reproductive organs, and salivary glands of different mosquito species, while their presence has also been reported in several other insects. Notably, Asaia has great potential as a tool for the control of mosquito-borne diseases. Here, we present a wide phylogenomic analysis of Asaia strains isolated from different species of mosquito vectors and from different populations of the Mediterranean fruit fly (medfly), Ceratitis capitata, an insect pest of worldwide economic importance. We show that phylogenetically distant lineages of Asaia experienced independent genome reductions, despite following a common pattern, characterized by the early loss of genes involved in genome stability. This result highlights the role of specific metabolic pathways in the symbiotic relationship between Asaia and the insect host. Finally, we discovered that all but one of the Asaia strains included in the study possess the pyrethroid hydrolase gene. Phylogenetic analysis revealed that this gene is ancestral in Asaia, strongly suggesting that it played a role in the establishment of the symbiotic association between these bacteria and the mosquito hosts. We propose that this gene from the symbiont contributed to initial pyrethroid resistance in insects harboring Asaia, also considering the widespread production of pyrethrins by several plants.IMPORTANCE We have studied genome reduction within several strains of the insect symbiont Asaia isolated from different species/strains of mosquito and medfly. Phylogenetically distant strains of Asaia, despite following a common pattern involving the loss of genes related to genome stability, have undergone independent genome reductions, highlighting the peculiar role of specific metabolic pathways in the symbiotic relationship between Asaia and its host. We also show that the pyrethroid hydrolase gene is present in all the Asaia strains isolated except for the South American malaria vector Anopheles darlingi, for which resistance to pyrethroids has never been reported, suggesting a possible involvement of Asaia in determining resistance to insecticides.


Assuntos
Acetobacteraceae/genética , Proteínas de Bactérias/metabolismo , Ceratitis capitata/microbiologia , Culicidae/microbiologia , Genoma Bacteriano , Filogenia , Simbiose , Acetobacteraceae/classificação , Acetobacteraceae/isolamento & purificação , Acetobacteraceae/fisiologia , Animais , Proteínas de Bactérias/genética , Ceratitis capitata/efeitos dos fármacos , Ceratitis capitata/fisiologia , Culicidae/efeitos dos fármacos , Culicidae/fisiologia , Evolução Molecular , Tamanho do Genoma , Resistência a Inseticidas , Inseticidas/farmacologia , Masculino , Piretrinas/farmacologia
9.
Philos Trans R Soc Lond B Biol Sci ; 376(1818): 20190809, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33357050

RESUMO

Aedes aegypti mosquitoes carrying the wAlbB Wolbachia strain show a reduced capacity to transmit dengue virus. wAlbB has been introduced into wild Ae. aegypti populations in several field sites in Kuala Lumpur, Malaysia, where it has persisted at high frequency for more than 2 years and significantly reduced dengue incidence. Although these encouraging results indicate that wAlbB releases can be an effective dengue control strategy, the long-term success depends on wAlbB maintaining high population frequencies and virus transmission inhibition, and both could be compromised by Wolbachia-host coevolution in the field. Here, wAlbB-carrying Ae. aegypti collected from the field 20 months after the cessation of releases showed no reduction in Wolbachia density or tissue distribution changes compared to a wAlbB laboratory colony. The wAlbB strain continued to induce complete unidirectional cytoplasmic incompatibility, showed perfect maternal transmission under laboratory conditions, and retained its capacity to inhibit dengue. Additionally, a field-collected wAlbB line was challenged with Malaysian dengue patient blood, and showed significant blocking of virus dissemination to the salivary glands. These results indicate that wAlbB continues to inhibit currently circulating strains of dengue in field populations of Ae. aegypti, and provides additional support for the continued scale-up of Wolbachia wAlbB releases for dengue control. This article is part of the theme issue 'Novel control strategies for mosquito-borne diseases'.


Assuntos
Aedes , Dengue/prevenção & controle , Mosquitos Vetores , Controle Biológico de Vetores , Wolbachia/genética , Animais , Vírus da Dengue/fisiologia , Malásia , Replicação Viral
11.
Pathogens ; 9(5)2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32429180

RESUMO

Mosquitoes can transmit many infectious diseases, such as malaria, dengue, Zika, yellow fever, and lymphatic filariasis. Current mosquito control strategies are failing to reduce the severity of outbreaks that still cause high human morbidity and mortality worldwide. Great expectations have been placed on genetic control methods. Among other methods, genetic modification of the bacteria colonizing different mosquito species and expressing anti-pathogen molecules may represent an innovative tool to combat mosquito-borne diseases. Nevertheless, this emerging approach, known as paratransgenesis, requires a detailed understanding of the mosquito microbiota and an accurate characterization of selected bacteria candidates. The acetic acid bacteria Asaia is a promising candidate for paratransgenic approaches. We have previously reported that Asaia symbionts play a beneficial role in the normal development of Anopheles mosquito larvae, but no study has yet investigated the role(s) of Asaia in adult mosquito biology. Here we report evidence on how treatment with a highly specific anti-Asaia monoclonal antibody impacts the survival and physiology of adult Anopheles stephensi mosquitoes. Our findings offer useful insight on the role of Asaia in several physiological systems of adult mosquitoes, where the influence differs between males and females.

12.
Nat Commun ; 11(1): 2187, 2020 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-32366903

RESUMO

A possible malaria control approach involves the dissemination in mosquitoes of inherited symbiotic microbes to block Plasmodium transmission. However, in the Anopheles gambiae complex, the primary African vectors of malaria, there are limited reports of inherited symbionts that impair transmission. We show that a vertically transmitted microsporidian symbiont (Microsporidia MB) in the An. gambiae complex can impair Plasmodium transmission. Microsporidia MB is present at moderate prevalence in geographically dispersed populations of An. arabiensis in Kenya, localized to the mosquito midgut and ovaries, and is not associated with significant reductions in adult host fecundity or survival. Field-collected Microsporidia MB infected An. arabiensis tested negative for P. falciparum gametocytes and, on experimental infection with P. falciparum, sporozoites aren't detected in Microsporidia MB infected mosquitoes. As a microbe that impairs Plasmodium transmission that is non-virulent and vertically transmitted, Microsporidia MB could be investigated as a strategy to limit malaria transmission.


Assuntos
Anopheles/parasitologia , Malária Falciparum/parasitologia , Mosquitos Vetores/parasitologia , Plasmodium falciparum/fisiologia , Animais , Anopheles/microbiologia , Interações Hospedeiro-Patógeno , Humanos , Quênia , Malária Falciparum/prevenção & controle , Malária Falciparum/transmissão , Microsporídios/fisiologia , Controle de Mosquitos/métodos , Mosquitos Vetores/microbiologia , Esporozoítos/fisiologia , Simbiose
13.
PLoS Negl Trop Dis ; 14(3): e0007926, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32155143

RESUMO

The global incidence of arboviral diseases transmitted by Aedes mosquitoes, including dengue, chikungunya, yellow fever, and Zika, has increased dramatically in recent decades. The release of Aedes aegypti carrying the maternally inherited symbiont Wolbachia as an intervention to control arboviruses is being trialled in several countries. However, these efforts are compromised in many endemic regions due to the co-localization of the secondary vector Aedes albopictus, the Asian tiger mosquito. Ae. albopictus has an expanding global distribution following incursions into a number of new territories. To date, only the wMel and wPip strains of Wolbachia have been reported to be transferred into and characterized in this vector. A Wolbachia strain naturally infecting Drosophila simulans, wAu, was selected for transfer into a Malaysian Ae. albopictus line to create a novel triple-strain infection. The newly generated line showed self-compatibility, moderate fitness cost and complete resistance to Zika and dengue infections.


Assuntos
Aedes/microbiologia , Aedes/virologia , Antibiose , Arbovírus/crescimento & desenvolvimento , Wolbachia/crescimento & desenvolvimento , Animais , Infecções por Arbovirus/prevenção & controle , Transmissão de Doença Infecciosa/prevenção & controle , Drosophila/microbiologia , Feminino , Masculino , Mosquitos Vetores/microbiologia , Mosquitos Vetores/virologia , Wolbachia/isolamento & purificação
14.
Front Genet ; 10: 836, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31608103

RESUMO

In mosquitoes, the discovery of the numerous interactions between components of the microbiota and the host immune response opens up the attractive possibility of the development of novel control strategies against mosquito borne diseases. We have focused our attention to Asaia, a symbiont of several mosquito vectors who has been proposed as one of the most potential tool for paratransgenic applications; although being extensively characterized, its interactions with the mosquito immune system has never been investigated. Here we report a study aimed at describing the interactions between Asaia and the immune system of two vectors of malaria, Anophelesstephensi and An. gambiae. The introduction of Asaia isolates induced the activation of the basal level of mosquito immunity and lower the development of malaria parasite in An. stephensi. These findings confirm and expand the potential of Asaia in mosquito borne diseases control, not only through paratransgenesis, but also as a natural effector for mosquito immune priming.

15.
Genome Biol Evol ; 11(1): 1-10, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30476071

RESUMO

Symbiosis is now recognized as a driving force in evolution, a role that finds its ultimate expression in the variety of associations bonding insects with microbial symbionts. These associations have contributed to the evolutionary success of insects, with the hosts acquiring the capacity to exploit novel ecological niches, and the symbionts passing from facultative associations to obligate, mutualistic symbioses. In bacterial symbiont of insects, the transition from the free-living life style to mutualistic symbiosis often resulted in a reduction in the genome size, with the generation of the smallest bacterial genomes thus far described. Here, we show that the process of genome reduction is still occurring in Asaia, a group of bacterial symbionts associated with a variety of insects. Indeed, comparative genomics of Asaia isolated from different mosquito species revealed a substantial genome size and gene content reduction in Asaia from Anopheles darlingi, a South-American malaria vector. We thus propose Asaia as a novel model to study genome reduction dynamics, within a single bacterial taxon, evolving in a common biological niche.


Assuntos
Acetobacteraceae/genética , Culicidae/microbiologia , Tamanho do Genoma , Genoma Bacteriano , Animais , Feminino , Simbiose
16.
Environ Microbiol Rep ; 9(5): 642-648, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28714286

RESUMO

There is still a lack of studies on fungal microbiota in mosquitoes, compared with the number available on bacterial microbiota. This study reports the identification of yeasts of clinical significance in laboratory mosquito species: Anopheles gambiae, Anopheles stephensi, Culex quinquefasciatus, Aedes albopictus and Aedes aegypti. Among the yeasts isolated, they focused on the opportunistic pathogen Candida parapsilosis, since there is a need to better understand breakthrough candidaemia with resistance to the usual antifungals, which requires careful consideration in the broad-spectrum therapy, as documented in many clinical reports. C. parapsilosis occurs widely and has been isolated from diverse sources, including insects, which may contribute to its dissemination. In this study, it was isolated from the gut of An. gambiae and its presence in developmental stages and organs of different mosquito species was studied. Our results indicated that there was a stable association between C. parapsilosis and reared mosquitoes during the entire life cycle, and in adult male and female gut and gonads. A wide occurrence of C. parapsilosis was also documented in several populations of wild mosquitoes. Based on these findings, it can be said that mosquitoes might participate in the spreading of this opportunistic pathogen, not only as a carrier.


Assuntos
Culicidae/microbiologia , Meio Ambiente , Interações Hospedeiro-Patógeno , Leveduras , Animais , Feminino , Masculino , Metagenoma , Metagenômica/métodos , Microbiota , Reação em Cadeia da Polimerase , Leveduras/classificação , Leveduras/genética , Leveduras/isolamento & purificação
17.
Parasit Vectors ; 9: 140, 2016 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-26965746

RESUMO

BACKGROUND: Malaria still remains a serious health burden in developing countries, causing more than 1 million deaths annually. Given the lack of an effective vaccine against its major etiological agent, Plasmodium falciparum, and the growing resistance of this parasite to the currently available drugs repertoire and of Anopheles mosquitoes to insecticides, the development of innovative control measures is an imperative to reduce malaria transmission. Paratransgenesis, the modification of symbiotic organisms to deliver anti-pathogen effector molecules, represents a novel strategy against Plasmodium development in mosquito vectors, showing the potential to reduce parasite development. However, the field application of laboratory-based evidence of paratransgenesis imposes the use of more realistic confined semi-field environments. METHODS: Large cages were used to evaluate the ability of bacteria of the genus Asaia expressing green fluorescent protein (Asaia (gfp)), to diffuse in Anopheles stephensi and Anopheles gambiae target mosquito populations. Asaia (gfp) was introduced in large cages through the release of paratransgenic males or by sugar feeding stations. Recombinant bacteria transmission was directly detected by fluorescent microscopy, and further assessed by molecular analysis. RESULTS: Here we show the first known trial in semi-field condition on paratransgenic anophelines. Modified bacteria were able to spread at high rate in different populations of An. stephensi and An. gambiae, dominant malaria vectors, exploring horizontal ways and successfully colonising mosquito midguts. Moreover, in An. gambiae, vertical and trans-stadial diffusion mechanisms were demonstrated. CONCLUSIONS: Our results demonstrate the considerable ability of modified Asaia to colonise different populations of malaria vectors, including pecies where its association is not primary, in large environments. The data support the potential to employ transgenic Asaia as a tool for malaria control, disclosing promising perspective for its field application with suitable effector molecules.


Assuntos
Acetobacteraceae/crescimento & desenvolvimento , Acetobacteraceae/genética , Anopheles/microbiologia , Anopheles/fisiologia , Técnicas de Transferência de Genes , Insetos Vetores , Acetobacteraceae/metabolismo , Animais , Proteínas de Fluorescência Verde/análise , Proteínas de Fluorescência Verde/genética , Microscopia de Fluorescência , Biologia Molecular , Projetos Piloto , Proteínas Recombinantes/análise , Proteínas Recombinantes/genética , Coloração e Rotulagem
18.
Parasit Vectors ; 8: 278, 2015 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-25981386

RESUMO

BACKGROUND: Wolbachia is a group of intracellular maternally inherited bacteria infecting a high number of arthropod species. Their presence in different mosquito species has been largely described, but Aedes aegypti, the main vector of Dengue virus, has never been found naturally infected by Wolbachia. Similarly, malaria vectors and other anophelines are normally negative to Wolbachia, with the exception of an African population where these bacteria have recently been detected. Asaia is an acetic acid bacterium stably associated with several mosquito species, found as a dominant microorganism of the mosquito microbiota. Asaia has been described in gut, salivary glands and in reproductive organs of adult mosquitoes in Ae. aegypti and in anophelines. It has recently been shown that Asaia may impede vertical transmission of Wolbachia in Anopheles mosquitoes. Here we present an experimental study, aimed at determining whether there is a negative interference between Asaia and Wolbachia, for the gonad niche in mosquitoes. METHODS: Different methods (PCR and qPCR, monoclonal antibody staining and FISH) have been used to address the question of the co-localization and the relative presence/abundance of the two symbionts. PCR and qPCR were performed to qualitatively and quantitatively verify the distribution of Asaia and Wolbachia in different mosquito species/organs. Monoclonal antibody staining and FISH were performed to localize the symbionts in different mosquito species. RESULTS: Here we provide evidence that, in Anopheles and in other mosquitoes, there is a reciprocal negative interference between Asaia and Wolbachia symbionts, in terms of the colonization of the gonads. In particular, we have shown that in some mosquito species the presence of one of the symbionts prevented the establishment of the second, while in other systems the symbionts were co-localized, although at reduced densities. CONCLUSIONS: A mutual exclusion or a competition between Asaia and Wolbachia may contribute to explain the inability of Wolbachia to colonize the female reproductive organs of anophelines, inhibiting its vertical transmission and explaining the absence of Wolbachia infection in Ae. aegypti and in the majority of natural populations of Anopheles mosquitoes.


Assuntos
Aedes/microbiologia , Alphaproteobacteria/isolamento & purificação , Anopheles/microbiologia , Gônadas/microbiologia , Wolbachia/isolamento & purificação , Animais , Feminino , Trato Gastrointestinal/microbiologia , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...